By Topic

Combined Intra-Prediction for High-Efficiency Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Andrea Gabriellini ; Research and Development Department, British Broadcasting Corporation (BBC), London, UK ; David Flynn ; Marta Mrak ; Thomas Davies

New activities in the video coding community are focused on the delivery of technologies that will enable economic handling of future visual formats at very high quality. The key characteristic of these new visual systems is the highly efficient compression of such content. In that context this paper presents a novel approach for intra-prediction in video coding based on the combination of spatial closed- and open-loop predictions. This new tool, called Combined Intra-Prediction (CIP), enables better prediction of frame pixels which is desirable for efficient video compression. The proposed tool addresses both the rate-distortion performance enhancement as well as low-complexity requirements that are imposed on codecs for targeted high-resolution content. The novel perspective CIP offers is that of exploiting redundancy not only between neighboring blocks but also within a coding block. While the proposed tool enables yet another way to exploit spatial redundancy within video frames, its main strength is being inexpensive and simple for implementation, which is a crucial requirement for video coding of demanding sources. As shown in this paper, the CIP can be flexibly modeled to support various coding settings, providing a gain of up to 4.5% YUV BD-rate for the video sequences in the challenging High-Efficiency Video Coding Test Model.

Published in:

IEEE Journal of Selected Topics in Signal Processing  (Volume:5 ,  Issue: 7 )