By Topic

Slow Light Property Improvement and Optical Buffer Capability in Ring-Shape-Hole Photonic Crystal Waveguide

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yi Zhai ; State Key Lab. of Inf. Photonics & Opt. Commun., Beijing Univ. of Posts & Telecommun., Beijing, China ; Huiping Tian ; Yuefeng Ji

Flatband slow light in a ring-shape-hole photonic crystal waveguide (RPCW) has been theoretically investigated. Numerical results show that both the outer and inner radii of the first two rows of holes adjacent to the defect have much affect on slow light properties. Therefore, by appropriately modifying the outer and inner radii of the ring-shaped holes, the slow light property is successfully optimized. Then we further enlarge the flat bandwidth by introducing the oblique structure. The negligible dispersion bandwidths ranging from 3.57 to 24.67 nm for group indexes from 28 to 115 are obtained, respectively, which is effectively improved if compared with other RPCW structures in previous works. Moreover, we also discussed the buffer capability and signal transmission characters of the RPCW. The result shows that the proposed structure has considerable potential for optical buffering applications.

Published in:

Lightwave Technology, Journal of  (Volume:29 ,  Issue: 20 )