By Topic

Study on semi-active suspension system of tracked vehicle based on variable universe fuzzy control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lingjie Kong ; Science and technology on complex land systems simulation, laboratory, Beijing, China ; Xinjun Zhao ; Baili Qi

The suspension system with high performances is an important factor ensuring the tracked vehicle mobility and comfortable in different situations. Magneto rheological dampers, which are semi-active suspension equipment that use magneto rheological fluids to produce controllable force, can be used as smart actuators to reduce the vibrations of mechanical systems. An analytical study is performed in this article to examine the effectiveness of this type of actuator in suppressing the vibrations of a tracked vehicle suspension system. Based on the fluid mechanics theory, an amendment dynamic model of magneto rheological damper is derived. Considering the suspension characteristic and uncertainty of a magneto rheological damper, a variable universe fuzzy controller is designed to achieve a control of active variable damping. The results proved that the derived magneto rheological damper dynamic model is correct and indicated that the designed variable universe fuzzy controller could reduce the tracked vehicle vibration, which will further establish the basis of engineering application for a magneto rheological damper on semi-active suspension.

Published in:

2011 IEEE International Conference on Mechatronics and Automation

Date of Conference:

7-10 Aug. 2011