Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Fast plane detection for SLAM from noisy range images in both structured and unstructured environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao, Junhao ; Dept. of Comput. Sci., Univ. of Hamburg, Hamburg, Germany ; Jianhua Zhang ; Jianwei Zhang ; Houxiang Zhang
more authors

This paper focuses on fast plane detection in noisy range images. First, two improvements to the state-of-the-art region growing algorithm are presented to make it faster without losing precision for unstructured environments. One is to add the seed selection procedure based on local shape information to avoid blind growth. The other is to simplify the plane fitting mean square error computation complex. Second, a novel algorithm called grid-based region growing is presented for structured environments. The point cloud is divided into small patches based on neighborhood information when it is viewed as a range image. The small patch is called grid. Then the grids are classified into different categories according to their local appearance, including sparse, planar, spherical and linear. Finally, the planar grids are clustered into big patches by region growing. The plane parameters are incrementally computed whenever a new grid is added. The resulting planes can be used for 3D plane simultaneous localization and mapping (SLAM). Experimental results show promising plane detecting speed for both structured and unstructured environments.

Published in:

Mechatronics and Automation (ICMA), 2011 International Conference on

Date of Conference:

7-10 Aug. 2011