Cart (Loading....) | Create Account
Close category search window
 

Scanning transmission low-energy electron microscopy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Mullerova, I. ; Institute of Scientific Instruments ASCR, Brno, Czech Republic ; Hovorka, M. ; Konvalina, I. ; Uncovsky, M.
more authors

We discuss an extension to the transmission mode of the cathode-lens-equipped scanning electron microscope, enabling operation down to the lowest energies of electrons. Penetration of electrons through free-standing ultrathin films is examined along the full energy scale, and the contribution of the secondary electrons (SEs), released near the bottom surface of the sample, is shown, enhancing the apparent transmissivity of the sample to more than 100%. Provisional filtering off of the SEs, providing the dark-field signal of forward-scattered electrons, was made using an annular 3-D adjustable detector inserted below the sample. Demonstration experiments were performed on the graphene flakes and on a 3-nm-thick carbon film. Electron penetrability at the lowest energies was measured on the graphene sample.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:55 ,  Issue: 4 )

Date of Publication:

July-Aug. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.