By Topic

Nanoscale 3-D (E, k_{x}, k_{y}) band structure imaging on graphene and intercalated graphene

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
A. A. Zakharov ; MAX-lab, Lund University, Lund, Sweden ; C. Virojanadara ; S. Watcharinyanon ; R. Yakimova
more authors

An x-ray photoemission electron microscope (X-PEEM) equipped with a hemispherical energy analyzer is capable of fast acquisition of momentum-resolved photoelectron angular distribution patterns in a complete cone. We have applied this technique to observe the 3-D (E, k_{x}, k_{y}) electronic band structure of zero-, one-, and two-monolayer (ML) graphene grown ex situ on 6H-SiC(0001) substrates where a carbon buffer layer (zero ML) forms underneath the graphene layer(s). We demonstrate that the interfacial buffer layer can be converted into quasi-free-standing graphene upon intercalation of Li atoms at the interface and that such a graphene is structurally and electronically decoupled from the SiC substrate. High energy and momentum resolution of the X-PEEM, along with short data acquisition times from submicrometer areas on the surface demonstrates the uniqueness and the versatility of the technique and broadens its impact and applicability within surface science and nanotechnology.

Note: The Institute of Electrical and Electronics Engineers, Incorporated is distributing this Article with permission of the International Business Machines Corporation (IBM) who is the exclusive owner. The recipient of this Article may not assign, sublicense, lease, rent or otherwise transfer, reproduce, prepare derivative works, publicly display or perform, or distribute the Article.  

Published in:

IBM Journal of Research and Development  (Volume:55 ,  Issue: 4 )