By Topic

Joint Scheduling and Network Coding for Multicast in Delay-Constrained Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rajawat, K. ; Dept. of Electr. & Comput. Eng., Univ. of Minnesota, Minneapolis, MN, USA ; Giannakis, G.B.

This paper deals with network-coded multicast for real-time and streaming-media applications where packets have explicit expiration deadlines. Most of the popular network coding approaches require asymptotically large block-lengths, thereby incurring long decoding delays. The present paper introduces a joint scheduling and network coding design that aims to maximize the average throughput while respecting the packet deadlines. The novel approach relies on a time-unwrapped graph expansion in order to construct the network codes. The resultant algorithm draws from the well-known augmenting-path algorithm, and is both distributed as well as scalable. For networks with primary interference, a lower-bound on the worst-case performance of the algorithm is provided. The associated optimization problem is also analyzed from an integer programming perspective, and a set of valid inequalities is derived to obtain an upper bound.

Published in:

Signal Processing, IEEE Transactions on  (Volume:59 ,  Issue: 12 )