By Topic

Toward Continuous State–Space Regulation of Coupled Cyber–Physical Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Bradley, J.M. ; Aerosp. Eng. Dept., Univ. of Michigan, Ann Arbor, MI, USA ; Atkins, E.M.

Cyber-physical system (CPS) research aims to integrate physical and computational models in a manner that outperforms a system in which the two models are kept separate. CPSs can be generated by either folding properties of the physics-based system into a discrete modeling paradigm or vice versa. This paper studies the latter by abstracting execution rate of a real-time feedback control task into a continuous state-space form traditionally employed for physics-based systems. We propose coupling the two models in a linear systems framework and study the impact of this coupling applied to a single degree of freedom second-order oscillator as well as an unstable inverted pendulum, both regulated with an appropriately designed linear quadratic regulator (LQR). Our results illustrate the utility of the proposed abstraction and controller design as a means of coregulating cyber and physical states in real time.

Published in:

Proceedings of the IEEE  (Volume:100 ,  Issue: 1 )