Cart (Loading....) | Create Account
Close category search window
 

Exploring redundancy in sensor deployment to maximize network lifetime and coverage

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wei Shen ; Fac. of Inf. & Electron., Zhejiang Sci-Tech Univ., Hangzhou, China ; Qishi Wu

Energy efficiency and fault tolerance are two important features required for sustained and reliable operations of wireless sensor networks deployed in unstructured environments. This paper investigates an approach to prolonging network lifetime and ensuring sensing reliability by organizing the sensors into several disjoint subsets, each of which takes shift to cover the entire region. This strategy is made possible by the enormous redundancy in large-scale sensor network applications where many small and inexpensive sensors are deployed to achieve quality through quantity. However, such energy savings through shift taking in time and fault tolerance via redundant coverage require an appropriate network partition in space: each on-duty subset must (i) cover the entire region, (ii) maintain its own connectivity, and (iii) cover every point with multiple sensors. Based on a general sensor network model, we formulate this problem as an NP-complete Connected M-SET k-Coverage problem. We rigorously derive a necessary and sufficient condition for checking the sensor coverage of a continuous two-dimensional space based on geometric reasoning, and analytically derive the upper bounds on both M and k for any given sensor network. We further propose a heuristic approach to this problem and evaluate its performance through extensive simulations.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on

Date of Conference:

27-30 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.