By Topic

A power-efficient wireless sensor network for continuously monitoring seismic vibrations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Weiss, B. ; IBM Zurich Res. Lab., Rüschlikon, Switzerland ; Truong, H.L. ; Schott, W. ; Munari, A.
more authors

We present a novel power-efficient wireless sensor network for continuously monitoring and analyzing seismic vibrations with sensor nodes and forwarding the retrieved information with low-cost relay nodes to backend applications. The applied vibration sensing algorithms are derived from the DIN 4150-3 standard. All nodes in the network are battery-powered and equipped with an IEEE 802.15.4 compatible radio transceiver. The nodes communicate with each other by executing a novel power-efficient protocol stack, which provides all network functions required by the vibration-sensing application and uses a publish/subscribe messaging protocol for communicating between the network nodes and the backend applications. Results obtained in certification and field tests show that the proposed vibration-sensing solution is standard-compliant, and that the wireless vibration sensor network (WVSN) exhibits excellent performance in terms of packet delivery rate, latency, and power efficiency.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on

Date of Conference:

27-30 June 2011