By Topic

Realizing high performance multi-radio 802.11n wireless networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Sriram Lakshmanan ; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA ; Jeongkeun Lee ; Raul Etkin ; Sung-Ju Lee
more authors

We explore the design of a high capacity multi-radio wireless network using commercial 802.11n hardware. We first use extensive real-life experiments to evaluate the performance of closely located 802.11n radios. We discover that even when tuned to orthogonal channels, co-located 802.11n radios interfere with each other and achieve significantly less throughput than expected. Our analysis reveals that the throughput degradation is caused by three link-layer effects: (i) triggering of carrier sensing, (ii) out of band collisions and (iii) unintended frequency adaptation. Using physical layer statistics, we observe that these effects are caused by fundamental limitations of co-located radios in achieving signal isolation. We then consider the use of beamforming antennas, shielding and antenna separation distance to achieve better signal isolation and to mitigate these problems. Our work profiles the gains of different physical isolation approaches and provides insights to network designers to realize high-performance wireless networks without requiring synchronization or protocol modifications.

Published in:

Sensor, Mesh and Ad Hoc Communications and Networks (SECON), 2011 8th Annual IEEE Communications Society Conference on

Date of Conference:

27-30 June 2011