By Topic

Fast frequency sweep technique for the efficient analysis of dielectric waveguides

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Polstyanko, S.V. ; Worcester Polytech. Inst., MA, USA ; Dyczij-Edlinger, R. ; Lee, J.-F.

This paper describes a new approach to spectral response computations of an arbitrary two-dimensional (2-D) waveguide. This technique is based on the tangential-vector finite-element method (TVFEM) in conjunction with the asymptotic waveform evaluation (AWE) technique. The former is used to obtain modes characteristics for a central frequency, whereas the latter employs an efficient algorithm to compute frequency moments for each mode. These moments are then matched via Pade approximation to a reduced-order rational polynomial, which can be used to interpolate each mode over a frequency band with a high degree of accuracy. Furthermore, the moments computations and subsequent interpolation for a given set of frequency points can be done much more rapidly than just simple simulations for each frequency point.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:45 ,  Issue: 7 )