By Topic

A model for designing scalable and efficient adaptive routing approaches in emergency Ad hoc communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ramrekha, T.A. ; Wireless Multimedia & Networking (WMN) Res. Group, Kingston Univ. London, Kingston upon Thames, UK ; Millar, G.P. ; Politis, C.

The self-organised nature of Mobile Ad hoc Networks (MANETs) makes it a suitable candidate for rescuer communication in disaster scenarios. This paper presents a model basis for supporting the design of hybrid and adaptive routing protocols such as ChaMeLeon (CML). A size threshold point between proactive and reactive routing approaches is established using a probabilistic analytical model using dimensional cardinalities of the effective operation area, called the critical area (CA). CML adapts its routing behaviour according to the network size in order to improve overall routing efficiency while preserving acceptable quality of service (QoS) relative to well known protocols that are Ad hoc On-demand Distance Vector (AODV) routing and Optimized Link Sate Routing (OLSR). These are also constituents of the reactive and proactive routing parts of CML respectively. The Evaluation section contains simulation results to support our analytical models and to compare the performance of CML with state of the art MANET routing protocols considering disaster scenarios with free space as well as obstacle prone environments also used to establish our models. We finally discuss the results and present some conclusions.

Published in:

Computers and Communications (ISCC), 2011 IEEE Symposium on

Date of Conference:

June 28 2011-July 1 2011