By Topic

Vulnerability assessment of intrusion recovery countermeasures in wireless sensor networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Stavrou, E. ; Dept. of Comput. Sci., Univ. of Cyprus, Nicosia, Cyprus ; Pitsillides, A.

Wireless sensor networks (WSNs) have become a hot research topic in recent years and are considered to be one of the building blocks of pervasive computing. Many diverse, mission-critical applications are deployed, including military, rescue, healthcare, factory floor, and smart homes. Security is a fundamental requirement in such sensitive applications in order to ensure their reliable and stable operation. However, security is a fairly difficult task to achieve. The open nature of the wireless communication, the unrestricted deployment and limitations of WSNs and the existence of a variety of attacks threaten the security of a sensor network. Currently, research efforts have mainly focused on developing prevention and intrusion detection mechanisms in WSNs. Intrusion recovery is also an important aspect of security provisioning that is not given the same attention. Researchers have proposed intrusion recovery protocols to restore the network's operation when an attack is detected. Their designs are mostly based on simplified threat models, making the intrusion recovery countermeasures vulnerable to advanced threat models. Although the network may recover its operation after an attack is detected, it does not mean that the threat is eliminated. For example, a persistent adversary can adapt his intrusion strategy to compromise the deployed recovery countermeasure. This research work evaluates the robustness and reliability of well-known recovery countermeasures in WSNs against persistent adversaries. Evaluation results have shown that existing intrusion recovery solutions are vulnerable and can be exploited under different attack strategies in order to compromise the applied recovery countermeasures, and thus the network. The vulnerability assessment is carried out using ns-2 simulations in an IEEE 802.15.4 network and within the AODV context. Observations derived from the assessment contribute towards future directions that can drive new designs of intrusion recov- - ery protocols in WSNs.

Published in:

Computers and Communications (ISCC), 2011 IEEE Symposium on

Date of Conference:

June 28 2011-July 1 2011