By Topic

Multi-Channel l_{1} Regularized Convex Speech Enhancement Model and Fast Computation by the Split Bregman Method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Meng Yu ; Department of Mathematics, University of California, Irvine, CA, USA ; Wenye Ma ; Jack Xin ; Stanley Osher

A convex speech enhancement (CSE) method is presented based on convex optimization and pause detection of the speech sources. Channel spatial difference is identified for enhancing each speech source individually while suppressing other interfering sources. Sparse unmixing filters indicating channel spatial differences are sought by l1 norm regularization and the split Bregman method. A subdivided split Bregman method is developed for efficiently solving the problem in severely reverberant environments. The speech pause detection is based on a binary mask source separation method. The CSE method is evaluated objectively and subjectively, and found to outperform a list of existing blind speech separation approaches on both synthetic and room recorded speech mixtures in terms of the overall computational speed and separation quality.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:20 ,  Issue: 2 )