By Topic

Polynomial Control Method of DC/DC Converters for DC-Bus Voltage and Currents Management—Battery and Supercapacitors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Camara, M. ; GREAH Lab., Univ. of Havre, Le Havre, France ; Dakyo, B. ; Gualous, H.

This paper presents an embedded energy share method between the high energy storage system (battery) and the auxiliary energy storage system such as supercapacitors (SC). Using the SC and battery with a good strategy for energy management improves the performance of hybrid electric vehicles (HEVs). The SC modules are dimensioned for peak power requirement, and the battery's module ensures the average power of HEVs. The battery module is connected to dc-bus through a dc/dc converter for the first topology and without a converter for the second configuration. Buck-boost converters are used between the SC and the dc-bus to manage the available energy for all topologies. The originality of this paper stems from its focus on the control methods of the dc-bus voltage and currents, which use adjustable polynomial controllers (correctors based on polynomial approach). These methods are implemented in the PIC18F4431 microcontroller which ensures analog to digital conversion, and the pulsewidth modulation signals generation for dc/dc converters. Due to cost and available components, such as the power semiconductors (IGBT) and the battery, the experimental tests benches are carried out in reduced scale. Through some simulations and experimental results, the performance of the proposed control is shown and analyzed.

Published in:

Power Electronics, IEEE Transactions on  (Volume:27 ,  Issue: 3 )