By Topic

Analyzing the Windkessel Model as a Potential Candidate for Correcting Oscillometric Blood-Pressure Measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kurt Barbe ; Department of Fundamental Electricity and Instrumentation (ELEC; M$^{2}$ ESA), Vrije Universiteit Brussel, Brussels, Belgium ; Wendy Van Moer ; Danny Schoors

Developing a good model for oscillometric blood-pressure measurements is a hard task. This is mainly due to the fact that the systolic and diastolic pressures cannot be directly measured by noninvasive automatic oscillometric blood-pressure meters (NIBP) but need to be computed based on some kind of algorithm. This is in strong contrast with the classical Korotkoff method, where the diastolic and systolic blood pressures can be directly measured by a sphygmomanometer. Although an NIBP returns results similar to the Korotkoff method for patients with normal blood pressures, a big discrepancy exist between both methods for severe hyper- and hypotension. For these severe cases, a statistical model is needed to compensate or calibrate the oscillometric blood-pressure meters. Although different statistical models have been already studied, no immediate calibration method has been proposed. The reason is that the step from a model, describing the measurements, to a calibration, correcting the blood-pressure meters, is a rather large leap. In this paper, we study a “databased” Fourier series approach to model the oscillometric waveform and use the Windkessel model for the blood flow to correct the oscillometric blood-pressure meters. The method is validated on a measurement campaign consisting of healthy patients and patients suffering from either hyper- or hypotension.

Published in:

IEEE Transactions on Instrumentation and Measurement  (Volume:61 ,  Issue: 2 )