By Topic

Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ostrowski, J. ; Dept. of Manage. Sci., Univ. of Waterloo, Waterloo, ON, Canada ; Anjos, M.F. ; Vannelli, A.

This paper examines the polytope of feasible power generation schedules in the unit commitment (UC) problem. We provide computational results comparing formulations for the UC problem commonly found in the literature. We introduce a new class of inequalities, giving a tighter description of feasible operating schedules for generators. Computational results show that these inequalities can significantly reduce overall solution times.

Published in:

Power Systems, IEEE Transactions on  (Volume:27 ,  Issue: 1 )