By Topic

Dynamic Linewidth Measurement Method via an Optical Quadrature Front End

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Kai Shi ; Rince Inst., Dublin City Univ., Dublin, Ireland ; Watts, R. ; Reid, D. ; Huynh, T.N.
more authors

This letter describes a dynamic linewidth characterization method using an optical quadrature front end. The phase noise of the laser is recorded using a real-time oscilloscope in the time domain and the linewidth of the laser can be estimated statistically offline. The major advantage of this technique compared with conventional linewidth measurements in the frequency domain, is that this method enables the dynamic phase noise characterization which is increasingly important for fast wavelength tunable and switched networks employing advanced modulation formats. The dynamic linewidth of an sampled grating distributed Bragg reflector (SG-DBR) laser is characterized by using this method.

Published in:

Photonics Technology Letters, IEEE  (Volume:23 ,  Issue: 21 )