Cart (Loading....) | Create Account
Close category search window
 

Performance models for the processor farm paradigm

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wagner, A.S. ; Dept. of Comput. Sci., British Columbia Univ., Vancouver, BC, Canada ; Sreekantaswamy, H.V. ; Chanson, S.T.

In this paper, we describe the design, implementation, and modeling of a runtime kernel to support the processor farm paradigm on multicomputers. We present a general topology-independent framework for obtaining performance models to predict the performance of the start-up, steady-state, and wind-down phases of a processor farm. An algorithm is described, which for any interconnection network determines a tree-structured subnetwork that optimizes farm performance. The analysis technique is applied to the important case of k-ary tree topologies. The models are compared with the measured performance on a variety of topologies using both constant and varied task sizes

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:8 ,  Issue: 5 )

Date of Publication:

May 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.