By Topic

A Unified Spectral-Domain Approach for Saliency Detection and Its Application to Automatic Object Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chanho Jung ; Department of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea ; Changick Kim

In this paper, a visual attention model is incorporated for efficient saliency detection, and the salient regions are employed as object seeds for our automatic object segmentation system. In contrast with existing interactive segmentation approaches that require considerable user interaction, the proposed method does not require it, i.e., the segmentation task is fulfilled in a fully automatic manner. First, we introduce a novel unified spectral-domain approach for saliency detection. Our visual attention model originates from a well-known property of the human visual system that the human visual perception is highly adaptive and sensitive to structural information in images rather than nonstructural information. Then, based on the saliency map, we propose an iterative self-adaptive segmentation framework for more accurate object segmentation. Extensive tests on a variety of cluttered natural images show that the proposed algorithm is an efficient indicator for characterizing the human perception and it can provide satisfying segmentation performance.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 3 )