By Topic

Coupled Nonnegative Matrix Factorization Unmixing for Hyperspectral and Multispectral Data Fusion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yokoya, N. ; Univ. of Tokyo, Tokyo, Japan ; Yairi, T. ; Iwasaki, A.

Coupled nonnegative matrix factorization (CNMF) unmixing is proposed for the fusion of low-spatial-resolution hyperspectral and high-spatial-resolution multispectral data to produce fused data with high spatial and spectral resolutions. Both hyperspectral and multispectral data are alternately unmixed into end member and abundance matrices by the CNMF algorithm based on a linear spectral mixture model. Sensor observation models that relate the two data are built into the initialization matrix of each NMF unmixing procedure. This algorithm is physically straightforward and easy to implement owing to its simple update rules. Simulations with various image data sets demonstrate that the CNMF algorithm can produce high-quality fused data both in terms of spatial and spectral domains, which contributes to the accurate identification and classification of materials observed at a high spatial resolution.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:50 ,  Issue: 2 )