By Topic

An Item-based collaborative filtering method using Item-based hybrid similarity

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Sutheera Puntheeranurak ; Faculty of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand ; Thanut Chaiwitooanukool

Item-based collaborative filtering is a preferred technique on recommender system. It uses a value of item rating similarity to predict user's preference. In this paper, we include values of item attribute similarity to adjust the predicted rating equation for target item. The results of Item-based collaborative filtering that hybrid item rating similarity and item attribute similarity techniques have Mean Absolute Error (MAE) less than a traditional Item-based collaborative filtering technique and others. The proposed algorithm is efficient to predict better than traditional algorithm as shown in our experiments.

Published in:

2011 IEEE 2nd International Conference on Software Engineering and Service Science

Date of Conference:

15-17 July 2011