By Topic

An adaptive threshold segmentation method based on BP neural network for paper defect detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wang Xiaofang ; Autom. Lab., Shandong Inst. of Light Ind., Jinan, China ; Li Qinghua ; Li Jun

Threshold segmentation is the fastest method of defect detection in the modern defect inspection system based on computer vision. But in the real paper defect detection system, the segmentation thresholds usually change with the paper image luminance which is influenced by many factors. In order to resolve this problem, an adaptive threshold segmentation method based on BP neural network is proposed in this paper. For this method, BP neural network models are created and trained to obtain the segmentation thresholds according to the image luminance and the defects are segmented with these thresholds obtained by the network. This method is especially suitable for detecting three typical types of paper defects: dark spot, light spot and hole. The experiment results indicate that this method is efficient and can be applied to modern paper defect inspection system.

Published in:

Software Engineering and Service Science (ICSESS), 2011 IEEE 2nd International Conference on

Date of Conference:

15-17 July 2011