Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

A comparative study of congestion control algorithms in IPv6 Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Michopoulos, V. ; Dept. of Comput. Sci., Loughborough Univ. Loughborough, Loughborough, UK ; Lin Guan ; Oikonomou, G. ; Phillips, I.

In Wireless Sensor Networks (WSNs), congestion can cause a plethora of malfunctions such as packet loss, lower throughput and energy inefficiency, potentially resulting in reduced deployment lifetime and under-performing applications. This has led to several proposals describing congestion control (CC) mechanisms for sensor networks. Furthermore, the WSN research community has made significant efforts towards power saving MAC protocols with Radio Duty Cycling (RDC). However, careful study of previous work reveals that RDC schemes are often neglected during the design and evaluation of congestion control algorithms. In this paper, we argue that the presence (or lack) of RDC can drastically influence the performance of congestion detection. In addition, most WSN CC mechanisms are evaluated under traditional sensor network topologies and protocols (e.g. trickle data dissemination, tree data collection). The emerging IPv6 over Low power Wireless Personal Area Networks (6LoWPAN) and related standards pose a new requirement: we now need to investigate if previous findings regarding congestion control are still applicable. In this context, this paper contributes a comprehensive evaluation of existing congestion detection mechanisms in a simulated, multi-node 6LoWPAN sensor network. We present results from two sets of experiments, differentiated by the presence or lack of RDC.

Published in:

Distributed Computing in Sensor Systems and Workshops (DCOSS), 2011 International Conference on

Date of Conference:

27-29 June 2011