By Topic

Compact Degradation Sensors for Monitoring NBTI and Oxide Degradation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Prashant Singh ; Nvidia, University of Michigan, Santa Clara, CA, USA ; Eric Karl ; David Blaauw ; Dennis Sylvester

We designed two compact in situ NBTI and oxide degradation sensors with digital outputs in 130 nm CMOS. The 308 μm2 NBTI sensor and the 150 μm2 oxide degradation sensor provide digital frequency outputs and are compatible with a cell-based design methodology without requiring analog supplies. The sensors enable high-volume data collection and monitoring of degradation mechanisms to guide dynamic control schemes and warn of impending device failure. Large scale data-collection permits improved modeling and the potential for insight into the underlying reliability mechanisms. The oxide degradation sensor monitors the change in gate leakage under stress conditions and is the first proposed of its kind. The NBTI sensor is 110× smaller than previous work and is designed to compensate for temperature variations during measurement. A maximum error of 2.2% is observed for the NBTI sensor under process, voltage, and temperature variations. It provides ΔVth measurement with 3σ accuracy of 1.23 mV from 40° C-110° C.

Published in:

IEEE Transactions on Very Large Scale Integration (VLSI) Systems  (Volume:20 ,  Issue: 9 )