By Topic

Automatic Target Detection in High-Resolution Remote Sensing Images Using Spatial Sparse Coding Bag-of-Words Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hao Sun ; Key Lab. of Technol. in Geo-spatial In formation Process. & Applic. Syst., Beijing, China ; Xian Sun ; Hongqi Wang ; Yu Li
more authors

Automatic detection for targets with complex shape in high-resolution remote sensing images is a challenging task. In this letter, we propose a new detection framework based on spatial sparse coding bag-of-words (BOW) (SSCBOW) model to solve this problem. Specifically, after selecting a processing unit by the sliding window and extracting features, a new spatial mapping strategy is used to encode the geometric information, which not only represents the relative position of the parts of a target but also has the ability to handle rotation variations. Moreover, instead of K-means for visual-word encoding in the traditional BOW model, sparse coding is introduced to achieve a much lower reconstruction error. Finally, the SSCBOW representation is combined with linear support vector machine for target detection. The experimental results demonstrate the precision and robustness of our detection method based on the SSCBOW model.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:9 ,  Issue: 1 )