By Topic

Run-time adaptive energy-aware Motion and Disparity Estimation in Multiview Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bruno Zatt ; Karlsruhe Institute of Technology (KIT), Embedded Systems, Germany ; Muhammad Shafique ; Felipe Sampaio ; Luciano Agostini
more authors

This paper presents a novel run-time adaptive energy-aware Motion and Disparity Estimation (ME, DE) architecture for Multiview Video Coding (MVC). It incorporates efficient memory access and data prefetching techniques for jointly reducing the on/off-chip memory energy consumption. A dynamically expanding search window is constructed at run time to reduce the off-chip memory accesses. Considering the multi-stage processing nature of advanced fast ME/DE schemes, a reduced-sized multi-bank on-chip memory is employed which can be power-gated depending upon the video properties. As a result, when tested for various video sequence, our approach provides a dynamic energy reduction of 82-96% for the off-chip memory and a leakage energy reduction of 57-75% for the on-chip memory compared to the Level-C and Level-C+ prefetching techniques (which are the prominent data reuse and prefetching techniques in ME for video coding). The proposed ME/DE architecture is synthesized using a 65nm IBM low power technology. Compared to state-of-the-art MVC ME/DE hardware, our architecture provides 66% and 72% reduction in the area and power consumption, respectively. Moreover, our scheme achieves 30fps ME/DE 4-view HD1080p encoding with a power consumption of 74mW.

Published in:

Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE

Date of Conference:

5-9 June 2011