By Topic

Dynamic thermal management for multimedia applications using machine learning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yang Ge ; Dept. of Electr. & Comput. Eng., Binghamton Univ., Binghamton, NY, USA ; Qinru Qiu

Multimedia applications are expected to form the largest portion of workload in general purpose PC and portable devices. The ever-increasing computation intensity of multimedia applications elevates the processor temperature and consequently impairs the reliability and performance of the system. In this paper, we propose to perform dynamic thermal management using reinforcement learning algorithm for multimedia applications. The proposed learning model does not need any prior knowledge of the workload information or the system thermal and power characteristics. It learns the temperature change and workload switching patterns by observing the temperature sensor and event counters on the processor, and finds the management policy that provides good performance-thermal tradeoff during the runtime. We validated our model on a Dell personal computer with Intel Core 2 processor. Experimental results show that our approach provides considerable performance improvements with marginal increase in the percentage of thermal hotspot comparing to existing workload phase detection approach.

Published in:

Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE

Date of Conference:

5-9 June 2011