Cart (Loading....) | Create Account
Close category search window
 

Implicit Permutation Enumeration Networks and Binary Decision Diagrams Reordering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Stergiou, S. ; Fujitsu Laboratories of America, USA

Ordered Binary Decision Diagrams are a canonical representation of Boolean functions that is at the core of most formal verification systems and silicon compilers. Canonicity enables efficiency of manipulation but comes at the cost of fixing a variable evaluation order and predictably, BDD sizes are very sensitive to the selected order. The state-of-the-art reordering algorithms are based on transpositions of consecutive variables (swaps). Exact algorithms enumerate all possible n! permutations by performing a series of at least n! - 1 swaps, while heuristics typically either search for the optimum location of each variable independently (sifting) or utilize exact algorithms as a subroutine (k-window.) In this work we reduce the problem of variable ordering to that of obtaining a permutation enumeration transposition network. Our proposed network avoids traversing all n! permutations by exploiting structural properties of BDDs and requires the execution of fewer than 4n swaps sequentially instead of n! - 1. For the practically interesting cases of n = 4; 5 our algorithm requires only 11 (resp 59) sequential swaps instead of 23 (resp 119). We also propose an algorithm for moving between arbitrary variable orderings that executes at most n swaps sequentially, an improvement upon equation. Results suggest speedups of 162%; 308%; >; 10X over the k - window heuristic for k = 4; 6; 8 and near-linear speedups when moving between orderings.

Published in:

Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE

Date of Conference:

5-9 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.