By Topic

Biometric score fusion through discriminative training

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tyagi, V. ; IBM Res. - India, New Delhi, India ; Ratha, N.

In the multibiometric systems, various matcher/modality scores are fused together to provide better performance than the individual matcher scores. In the authors have proposed a likelihood ratio test (LRT) based fusion technique for the biometric verification task that outperformed several other classifiers. They model the genuine and the imposter densities by the finite Gaussian mixture models (GMM, a generative model) whose parameters are estimated using the maximum likelihood (ML) criteria. Lately, the discriminative training methods and models have been shown to provide additional accuracy gains over the generative models, in multiple applications such as the speech recognition, verification and text analytics. These gains are based on the fact that the discriminative models are able to partially compensate for the unavoidable mismatch, which is always present between the specified statistical model (GMM in this case) and the true distribution of the data which is unknown. In this paper, we propose to use a discriminative method to estimate the GMM density parameters using the maximum accept and reject (MARS) criteria. The test results using the proposed method on the NIST-BSSRI multimodal dataset indicate improved verification performance over a very competitive maximum likelihood (ML) trained system proposed in.

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on

Date of Conference:

20-25 June 2011