By Topic

Number theoretic fast algorithms for bilinear and other generalized transformations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
A. E. Yagle ; Dept. of Electr. Eng. & Comput. Sci., Michigan Univ., Ann Arbor, MI, USA

Fast algorithms based on the Mersenne and Fermat number-theoretic transforms are used to perform the bilinear transformation of a continuous transfer function to a discrete equivalent. The computations are carried out in finite precision arithmetic, require no multiplications, and can be implemented in parallel using very simple processors. Although the bilinear transform is presently emphasized, similar algorithms are easily derived for any transformation from the s-plane to the z-plane involving the ratio of two polynomials with integer coefficients

Published in:

IEEE Transactions on Automatic Control  (Volume:35 ,  Issue: 11 )