Cart (Loading....) | Create Account
Close category search window

Leveraging social network information to recognize people

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dikmen, M. ; Dept. of Electr. & Comput. Eng., Univ. of Illinois at Urbana, Urbana, IL, USA ; Huang, T.S.

Correctly identifying the observed subjects is an important problem camera networks. Prior art[1, 5] has demonstrated that this data association problem is indeed very difficult when working solely with visual information provided by the cameras, because the appearance of the subjects are highly variable. Visual data provided by surveillance cameras are in general noisy, low resolution, prone to degradation due to lighting and other adverse effects. We hypothesize that knowing the social associations of people can improve the recognition performance of a given visual-only matching metric. We cast the problem as bipartite graph matching problem between the observed people in the camera network and a database of identities and appearance models with an additional pairwise configuration cost on the set of identities. The effectiveness of our claim is demonstrated on a dataset synthesized from UC Irvine Pedestrian Recognition Dataset (VIPeR[3]) (for visual data) and Enron Email Dataset (for social network data).

Published in:

Computer Vision and Pattern Recognition Workshops (CVPRW), 2011 IEEE Computer Society Conference on

Date of Conference:

20-25 June 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.