Cart (Loading....) | Create Account
Close category search window
 

A prototyping environment for high performance reconfigurable computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Afonso, G. ; EADS Innovation Works, INRIA Lille-Nord Eur., Lille, France ; Ben Atitallah, R. ; Loyer, A. ; Dekeyser, J.
more authors

In the face of power wall and high performance requirements, designers of hardware architectures are directed more and more towards reconfigurable computing with the usage of heterogeneous CPU/FPGA systems. In such architectures, multi-core processors come with high computation rates while the reconfigurable logic offers high performance per watt and adaptability to the application constraints. However, the design of heterogeneous architectures is facing extremely challenging requirements such as the appropriate programming model, design tools, and the rapid system prototyping. Focusing this issue, we present a prototyping environment for heterogeneous CPU/FPGA systems. Within this environment, we conceived a generic and scalable architecture based on a multi-core processor tightly-connected to FPGA in order to meet performance, power and flexibility goals. Furthermore, front-end interfaces are presented in order to establish communication, data sharing, and synchronisation between the different software and hardware processing units. Finally, we defined a design methodology that eases the development of applications onto heterogeneous systems. Our environment is conceived using standard host machine coupled with a Xilinx Virtex 6 FPGA through the PCI Express standard bus. In the experimental part, we evaluate first the reliability of different CPU/FPGA communication solutions in order to bring real-time capabilities to our system. Secondly, we demonstrate the efficiency of the presented design methodology for heterogeneous systems through the FIR signal processing application.

Published in:

Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on

Date of Conference:

20-22 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.