By Topic

Nonlinear Unsharp Masking for Mammogram Enhancement

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Panetta, K. ; Dept. of Electr. & Comput. Eng., Tufts Univ., Medford, MA, USA ; Yicong Zhou ; Agaian, S. ; Hongwei Jia

This paper introduces a new unsharp masking (UM) scheme, called nonlinear UM (NLUM), for mammogram enhancement. The NLUM offers users the flexibility 1) to embed different types of filters into the nonlinear filtering operator; 2) to choose different linear or nonlinear operations for the fusion processes that combines the enhanced filtered portion of the mammogram with the original mammogram; and 3) to allow the NLUM parameter selection to be performed manually or by using a quantitative enhancement measure to obtain the optimal enhancement parameters. We also introduce a new enhancement measure approach, called the second-derivative-like measure of enhancement, which is shown to have better performance than other measures in evaluating the visual quality of image enhancement. The comparison and evaluation of enhancement performance demonstrate that the NLUM can improve the disease diagnosis by enhancing the fine details in mammograms with no a priori knowledge of the image contents. The human-visual-system-based image decomposition is used for analysis and visualization of mammogram enhancement.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:15 ,  Issue: 6 )