By Topic

Framelet-Based Blind Motion Deblurring From a Single Image

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jian-Feng Cai ; Department of Mathematics, University of Iowa, Iowa City, IA, USA ; Hui Ji ; Chaoqiang Liu ; Zuowei Shen

How to recover a clear image from a single motion-blurred image has long been a challenging open problem in digital imaging. In this paper, we focus on how to recover a motion-blurred image due to camera shake. A regularization-based approach is proposed to remove motion blurring from the image by regularizing the sparsity of both the original image and the motion-blur kernel under tight wavelet frame systems. Furthermore, an adapted version of the split Bregman method is proposed to efficiently solve the resulting minimization problem. The experiments on both synthesized images and real images show that our algorithm can effectively remove complex motion blurring from natural images without requiring any prior information of the motion-blur kernel.

Published in:

IEEE Transactions on Image Processing  (Volume:21 ,  Issue: 2 )