By Topic

Stabilization and Gevrey Regularity of a Schrödinger Equation in Boundary Feedback With a Heat Equation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jun-Min Wang ; Dept. of Math., Beijing Inst. of Technol., Beijing, China ; Beibei Ren ; Krstic, M.

We study stability of a Schrödinger equation with a collocated boundary feedback compensator in the form of a heat equation with a collocated input/output pair. Remarkably, exponential stability is achieved for both positive and negative gains, namely, as long as the gain is non-zero. We show that the spectrum of the closed-loop system consists only of two branches along two parabolas which are asymptotically symmetric relative to the line Reλ = -Imλ (the 135° line in the second quadrant). The asymptotic expressions of both eigenvalues and eigenfunctions are obtained. The Riesz basis property and exponential stability of the system are then proved. Finally we show that the semigroup, generated by the system operator, is of Gevrey class δ >; 2. A numerical computation is presented for the distributions of the spectrum of the closed-loop system.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 1 )