By Topic

Offset-corrected 5GHz CMOS dynamic comparator using bulk voltage trimming: Design and analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yongsheng Xu ; Electr. & Comput. Eng. Dept., Univ. of Calgary, Calgary, AB, Canada ; Belostotski, L. ; Haslett, J.W.

This paper presents an improved two-stage dynamic comparator using a bulk voltage trimming technique for offset calibration. The comparator requires only a one-phase clock while exerting no extra load on the first stage, leading to higher operating speed. The calibration does not require any extra power supply and does not consume any quiescent current, while increasing the offset calibrating range by a factor of 2 over previous techniques. Detailed analysis of the method of calibrating both stages of the dynamic comparator is provided. Simulation results in a 65nm digital CMOS process show that the comparator is capable of working at a speed of 5GHz with 90uW of power consumption from a 1V power supply, achieving an input-referred offset calibrating range of ±35mV at ~±2.3mV/step at the typical-typical process corner.

Published in:

New Circuits and Systems Conference (NEWCAS), 2011 IEEE 9th International

Date of Conference:

26-29 June 2011