By Topic

Millimeter-wave circuits and modules up to 500 GHz based on metamorphic HEMT technology for remote sensing and wireless communication applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
M. Schlechtweg ; Fraunhofer Institute for Applied Solid State Physics IAF Tullastrasse 72, 79108 Freiburg, Germany ; A. Tessmann ; I. Kallfass ; A. Leuther
more authors

Metamorphic high electron mobility transistor (mHEMT) technologies with 100, 50, and 35 nm gate lengths have been developed at Fraunhofer IAF for operation in the millimeter-wave frequency range up to 500 GHz. Based on these technologies, a variety of millimeter-wave monolithic integrated circuits (MMICs) has been realized employing grounded coplanar waveguides (GCPWs). To demonstrate the potential of these technologies, this paper presents some examples of MMICs and modules developed for use in next generation remote sensing and communication systems. Two four-stage cascode amplifier circuits for operation in the frequency ranges 220-325 GHz (H-band) and 325-500 GHz (WR-2.2 waveguide band) were realized using the 50 and 35 nm mHEMT technology, respectively. Furthermore, a 200 GHz active subharmonically-pumped heterodyne receiver MMIC based on the 100 nm mHEMT technology was realized.

Published in:

New Circuits and Systems Conference (NEWCAS), 2011 IEEE 9th International

Date of Conference:

26-29 June 2011