By Topic

Decentralized task sequencing and multiple mission control for heterogeneous robotic networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Donato Di Paola ; Institute of Intelligent Systems for Automation (ISSIA), National Research Council (CNR), 70126 Bari, Italy ; Andrea Gasparri ; David Naso ; Giovanni Ulivi
more authors

In this paper a novel decentralized approach for task sequencing within a multiple missions control framework is presented. The main contribution of this work concerns the decentralization of a control framework for multiple mission execution in order to enhance the robustness of the system, and the application of the latter to a heterogeneous robotic network. The proposed approach is based on the Matrix based Discrete Event Framework (MDEF). This formalism is adapted to networks of heterogeneous robots, i.e., robots with different capabilities, and to the decentralized control of mission execution using a consensus-based approach which guarantees the agreement among robots on executed actions and their consequences.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011