By Topic

Dynamics-based visual inspection through real-time modal analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

In this study, we propose the concept of dynamics-based visual inspection for the verification of structural dynamic properties of a vibrating object; the inspection method involves the analysis of the vibration distribution of the object by using a high-frame-rate video. Under unknown ambient excitation, modal parameters of an excited object are simultaneously estimated to determine its input-invariant dynamic properties by using a fast output-only modal analysis algorithm, SSI-CPAST. The algorithm was implemented on a 2000-fps vision platform, and it facilitates non-destructive monitoring of the structure of beam-shaped objects vibrating at dozens of hertz; the algorithm detects small changes in the dynamic properties of the objects caused by internal defects such as fatigue cracks. The modal parameters resonant frequency and mode shape were actually estimated for beam-shaped objects excited by human finger tapping to verify the performance of 2000-fps real-time dynamics-based visual inspection.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011