By Topic

A long-duration propulsive lunar landing testbed

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Krishna Shankar ; Department of Aerospace Engineering at the University of Illinois at Urbana-Champaign, USA ; Kevin Peterson ; Heather Jones ; Justin Moidel
more authors

Affordable test articles for descent and landing are crucial for developing commercial lunar landing capability. To ensure successful lunar landing, flight software must be tested over mission-length durations on hardware exhibiting dynamics analogous to those of true flight articles. Energetic and structural constraints typically preclude affordable long-duration lander tests.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011