By Topic

Finite alphabet iterative decoders for LDPC codes surpassing floating-point iterative decoders

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Planjery, S.K. ; Dept. of Electr. Eng., Univ. of Arizona, Tucson, AZ, USA ; Declercq, D. ; Danjean, L. ; Vasic, B.

Introduced is a new type of message-passing (MP) decoders for low-density parity-check (LDPC) codes over the binary symmetric channel. Unlike traditional belief propagation (BP) based MP algorithms which propagate probabilities or log-likelihoods, the new MP decoders propagate messages requiring only a finite number of bits for their representation in such a way that good performance in the error floor region is ensured. Additionally, these messages are not quantised probabilities or log-likelihoods. As examples, MP decoders are provided that require only three bits for message representation, but surpass the floating-point BP (which requires a large number of bits for representation) in the error-floor region.

Published in:

Electronics Letters  (Volume:47 ,  Issue: 16 )