Cart (Loading....) | Create Account
Close category search window
 

Levitation control of experimental wing-in-ground effect vehicle along Z axis and about roll and pitch axes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Sugahara, Y. ; Dept. of Bioeng. & Robot., Tohoku Univ., Sendai, Japan ; Ikeuchi, Y. ; Suzuki, R. ; Hirata, Y.
more authors

The goal of this study is to develop a control method for levitation stabilization of an aerodynamic levitated train named the "Aero-Train," which is a high-speed, high efficiency train system. The levitation in this system occurs because of the wing-in-ground effect that acts on a U-shaped guideway. In order to achieve the goal of this study, a small experimental prototype and a control method for stabilization along the Z axis and about the roll and pitch axes were developed, as described in this paper. The effectiveness of the developed control method is confirmed by experimental results.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.