Cart (Loading....) | Create Account
Close category search window
 

Structured sparse representation appearance model for robust visual tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tianxiang Bai ; Dept. of Manuf. Eng. & Eng. Manage., City Univ. of Hong Kong, Kowloon, China ; Li, Y.F. ; Yazhe Tang

We propose a robust visual tracker based on structured sparse representation appearance model. The appearance of tracking target is modeled as a sparse linear combination of Eigen templates plus a sparse error due to occlusions. We address the structured sparse representation that preferably matches the practical visual tracking problem by taking the contiguous spatial distribution of occlusion into account. The sparsity is achieved by Block Orthogonal Matching Pursuit (BOMP) for solving structured sparse representation problem more efficiently. The model update scheme, based on incremental Singular Value Decomposition (SVD), guarantees the Eigen templates that are able to capture the variations of target appearance online. Then the approximation error is adopted to build a probabilistic observation model that integrates with a stochastic affine motion model to form a particle filter framework for visual tracking. Thanks to the block structure of sparse representation and BOMP, our proposed tracker demonstrates superiority on both efficiency and robustness improvement in comparison experiments with publicly available benchmark video sequences.

Published in:

Robotics and Automation (ICRA), 2011 IEEE International Conference on

Date of Conference:

9-13 May 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.