By Topic

Degradation of Amorphous Silicon Thin Film Transistors Under Negative Gate Bias Stress

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dapeng Zhou ; Dept. of Microelectron., Soochow Univ., Suzhou, China ; Mingxiang Wang ; Shengdong Zhang

Degradation of amorphous silicon thin-film transistors under negative gate bias stresses is systematically investigated. It is found that both state creation and hole trapping contribute to device threshold voltage Vth shifts. For direct-current stresses, state creation dominates in low-stress amplitude conditions, whereas hole trapping could dominate the second-stage degradation in high-stress amplitude conditions. For alternating-current stresses, it is found that domination of state creation or hole trapping mechanisms depends on stress frequency f, temperature, amplitude, and stress time. As a result, different turnaround phenomena of Vth degradation are observed. Both state creation and hole trapping mechanisms are enhanced by higher stress temperatures and amplitudes. Based on an RC delay model, both f- and duty-ratio-dependent degradation under low-f stress conditions can be understood, whereas a recovery phenomenon under high- f stress conditions can be explained by the hole trapping/emission mechanism. Device leakage current Ioff decreases under low-f stress but increases under high- f stress. State creation is considered responsible for the Ioff reduction, whereas hole injection is considered responsible for the Ioff increase.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 10 )