By Topic

Fast and Accurate Array Calibration Using a Synthetic Array Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Will P. M. N. Keizer ; Clinckenburgh 32, Oegstgeest, The Netherlands

A new method for the calibration of arrays is presented that allows the simultaneous calibration of N array elements. It comprises the measurement of the array output signal at M phase settings applied to the N elements involved in the calibration. These M phase settings correspond to a linear phase taper that is unique for each of the involved elements and reveals therefore N different phase tapers. The complex M measurements of the array signal are thought to be the excitation coefficients of a synthetic M -element linear phased array. The array factor of this synthetic M-element array comprises a superposition of N+1 array factors all pointing with their main beam into different directions. By converting this superposition of N+1 array factors into a set of N+1 simultaneous linear equations, the signals of the N individual elements to be calibrated including the combined signal contribution of the static elements, can be solved by standard matrix inversion techniques. Computer simulations are presented to demonstrate the capabilities of the new calibration method.

Published in:

IEEE Transactions on Antennas and Propagation  (Volume:59 ,  Issue: 11 )