By Topic

Monolithically Integrated 200-GHz Double-Slot Antenna and Resistive Mixers in a GaAs-mHEMT MMIC Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Yu Yan ; Dept. of Microtechnol. & Nanosci. (MC2), Chalmers Univ. of Technol., Goteborg, Sweden ; Karandikar, Y.B. ; Gunnarsson, S.E. ; Motlagh, B.M.
more authors

This paper presents the design and characterization of two resistive mixers integrated with a double-slot antenna in a 100-nm GaAs mHEMT technology. With RF frequency varying from 185 to 202 GHz, a typical conversion loss (L c) of 8.0 dB is measured for the single-ended mixer and a typical L c of 12.2 dB is obtained from one of the two IF outputs for the single-balanced mixer. Each mixer is integrated with a double-slot antenna and mounted on an Si lens. Incorporating the antenna gain and the conversion loss of the mixer, a typical receiver gain of 15.4 dB is achieved for the integrated antenna with single-ended mixer, and a typical receiver gain of 11.2 dB is obtained for the integrated antenna with single-balanced mixer by measuring one of the two IF outputs. In this paper, a novel method is also proposed and proved to evaluate a moderate to high noise figure (NF) device in millimeter/sub millimeter frequency band. The result shows that the single-ended mixer in this paper has an NF around 1.0 dB higher compared to its Lc, and the single-balanced one has an NF about 1.6 dB higher than its Lc at room-temperature operation.

Published in:

Microwave Theory and Techniques, IEEE Transactions on  (Volume:59 ,  Issue: 10 )