Cart (Loading....) | Create Account
Close category search window
 

UAV Attitude Estimation Using Unscented Kalman Filter and TRIAD

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
de Marina, H.G. ; Dept. of Comput. Archit. & Automatics, Complutense Univ. of Madrid, Madrid, Spain ; Pereda, F.J. ; Giron-Sierra, J.M. ; Espinosa, F.

A main problem in autonomous vehicles in general, and in unmanned aerial vehicles (UAVs) in particular, is the determination of the attitude angles. A novel method to estimate these angles using off-the-shelf components is presented. This paper introduces an attitude heading reference system (AHRS) based on the unscented Kalman filter (UKF) using the three-axis attitude determination (TRIAD) algorithm as the observation model. The performance of the method is assessed through simulations and compared to an AHRS based on the extended Kalman filter (EKF). The paper presents field experiment results using a real fixed-wing UAV. The results show good real-time performance with low computational cost in a microcontroller.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 11 )

Date of Publication:

Nov. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.