By Topic

RF Extraction of Self-Heating Effects in FinFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Makovejev, S. ; Sch. of Electr., Electron. & Comput. Eng., Newcastle Univ., Newcastle upon Tyne, UK ; Olsen, S. ; Raskin, J.

Multigate semiconductor devices are celebrated for improved electrostatic control and reduced short-channel effects. However, nonplanar architectures suffer from increases of access resistances and capacitances, as well as self-heating effects due to confinement and increased phonon boundary scattering. In silicon-on-insulator (SOI) technology, the self-heating effects are aggravated by the presence of a thick buried oxide with low thermal conductivity, which prevents effective heat removal from the device active region to the Si substrate. Due to the shrinking of device dimensions in the nanometer scale, the thermal time constant that characterizes the dynamic self-heating is significantly reduced, and radio frequency extraction techniques are needed. The dynamic self-heating effect is characterized in n-channel SOI FinFETs, and the dependence of thermal resistance on FinFET geometry is discussed. It is experimentally confirmed that the fin width and the number of parallel fins are the most important parameters for thermal management in FinFETs, whereas fin spacing plays a less significant role.

Published in:

Electron Devices, IEEE Transactions on  (Volume:58 ,  Issue: 10 )